Abstract

Regulating the tumor microenvironment (TME) has been a promising strategy to improve antitumor therapy. Here, a red blood cell membrane (mRBC)-camouflaged hollow MnO2 (HMnO2 ) catalytic nanosystem embedded with lactate oxidase (LOX) and a glycolysis inhibitor (denoted as PMLR) is constructed for intra/extracellular lactic acid exhaustion as well as synergistic metabolic therapy and immunotherapy of tumor. Benefiting from the long-circulation property of the mRBC, the nanosystem can gradually accumulate in a tumor site through the enhanced permeability and retention (EPR) effect. The extracellular nanosystem consumes lactic acid in the TME by catalyzing its oxidation reaction via LOX. Meanwhile, the intracellular nanosystem releases the glycolysis inhibitor to cut off the source of lactic acid, as well as achieve antitumor metabolic therapy through the blockade of the adenosine triphosphate (ATP) supply. Both the extracellular and intracellular processes can be sensitized by O2 , which can be produced during the decomposition of endogenous H2 O2 catalyzed by the PMLR nanosystem. The results show that the PMLR nanosystem can ceaselessly remove lactic acid, and then lead to an immunocompetent TME. Moreover, this TME regulation strategy can effectively improve the antitumor effect of anti-PDL1 therapy without the employment of any immune agonists to avoid the autoimmunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.