Abstract
Demand response (DR) programs and local markets (LM) are two suitable technologies to mitigate the high penetration of distributed energy resources (DER) that is vastly increasing even during the current pandemic in the world. It is intended to improve operation by incorporating such mechanisms in the energy resource management problem while mitigating the present issues with Smart Grid (SG) technologies and optimization techniques. This paper presents an efficient intraday energy resource management starting from the day-ahead time horizon, which considers load uncertainty and implements both DR programs and LM trading to reduce the operating costs of three load aggregator in an SG. A random perturbation was used to generate the intraday scenarios from the day-ahead time horizon. A recent evolutionary algorithm HyDE-DF, is used to achieve optimization. Results show that the aggregators can manage consumption and generation resources, including DR and power balance compensation, through an implemented LM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.