Abstract
Conventional IVF as well as several assisted microfertilization techniques have shown limited success in the horse. After recent positive results achieved with intracytoplasmic injection of a single spermatozoon (ICSI) in human IVF, we chose to try the method in the horse. We compared conventional IVF to ICSI by fertilization rates of oocytes with compact and expanded cumuli and by developmental potential of the resulting embryos. Cumulus-oocyte complexes (COCs) were obtained by aspirating the follicular fluid from the ovaries of slaughtered mares. Complexes showing complete cumulus investment, either compact or expanded, were randomly assigned to IVF or ICSI trials and separately cultured for IVM. Frozen-thawed stallion spermatozoa were prepared for IVF with a swim-up procedure conducted in Talp-Hepes with heparin or for ICSI in Earle's balanced salt solution (EBSS) supplemented with human serum albumin (HSA). Oocytes for IVF were partially decumulated by pipetting, whereas those for ICSI were totally denuded with 80 UI/ml hyaluronidase. Oocytes were fixed, stained and examined for signs of fertilization the day after IVF or ICSI. The percentage of normally fertilized oocytes showing 2 pronuclei or cleavage was significantly higher with ICSI than IVF (29.8%, 17 57 vs 8.7%, 9 103 ; P < 0.01). Significantly higher fertilization rates were observed in oocytes retrieved with an expanded cumulus when submitted to ICSI procedure as compared with IVF (52.2%, 12 23 vs 17.1%, 6 35 ; P < 0.01), whereas in oocytes recovered with a compact cumulus, fertilization rates were low (14.7%, 5 34 with ICSI and 4.4%, 3 68 with IVF; NS). Embryonal development did not occur after culture following IVF, as indicated by absence of cleavage in any of the 93 inseminated oocytes. Following ICSI, 7 of 55 injected oocytes cleaved, 5 of which had shown expanded cumuli; of the 5, 2 were at the 16-cell stage and one each at the 8-, 3- and 2-cell stage, respectively. The other 2 fertilized oocytes, originating from compact cumuli, reached 4- and 8- cell stages, respectively. These results indicate that ICSI can be applied successfully to in-vitro matured equine oocytes to increase the fertilization rates. In addition, it seems that in vitro cytoplasmic maturation of oocytes issuing from a compact cumulus may not be complete enough to lead to a successful fertilization and that ICSI may be a tool to evaluate ooplasmic maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.