Abstract

Finding the ground-state energy of electrons subject to an external electric field is a fundamental problem in computational chemistry. While the theory of QMA-completeness has been instrumental in understanding the complexity of finding ground states in many-body quantum systems, prior to this work it has been unknown whether or not the special form of the Hamiltonian for the electronic structure of molecules can be exploited to find ground states efficiently or whether the problem remains hard for this special case. We prove that the electronic-structure problem, when restricted to a fixed single-particle basis and a fixed number of electrons, is QMA-complete. In our proof, the local Hamiltonian is encoded in the choice of spatial orbitals used to discretize the electronic-structure Hamiltonian. In contrast, Schuch and Verstraete have proved hardness for the electronic-structure problem with an additional site-specific external magnetic field, but without the restriction to a fixed basis, by encoding a local Hamiltonian on qubits in the site-specific magnetic field. We also show that estimation of the energy of the lowest-energy Slater-determinant state (i.e., the Hartree-Fock state) is nondeterministic polynomial time (NP)-complete for the electronic-structure Hamiltonian in a fixed basis.Received 5 October 2021Revised 18 January 2022Accepted 14 March 2022DOI:https://doi.org/10.1103/PRXQuantum.3.020322Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasElectronic structureTechniquesComputational complexityQuantum Information

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call