Abstract

To isolate the anatomical locus of the neural activity most important for generating or modulating the scalp-recorded N400 and P600 components elicited during continuous recognition memory tasks, intracranial event-related potentials (ERPs) were recorded from medial and lateral aspects of the temporal, frontal, parietal, and occipital lobes in 25 patients undergoing stereoelectroencephalography for seizure localization. Large-amplitude and polarity-inverted ERPs were recorded from various temporal, frontal, and parietal structures, whereas the memory-related ERP modulation assessed by the ERP repetition effect was present only in those brain areas that play the most important role in memory processing. These data suggest that the scalp-recorded N400 and P600 components may represent the most readily observable aspect of synchronous activity occurring across widely distributed brain structures and neural systems underlying different cognitive mechanisms, which all contribute to some aspect of information processing during recognition memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.