Abstract

Steno-occlusive lesions in intracranial arteries refer to segments of narrowed or occluded blood vessels that increase the risk of ischemic strokes. Steno-occlusive lesion detection is crucial in clinical settings; however, automatic detection methods have hardly been studied. Therefore, we propose a novel automatic method to detect steno-occlusive lesions in sequential transverse slices on time-of-flight magnetic resonance angiography. Our method simultaneously detects lesions while segmenting blood vessels based on end-to-end multi-task learning, reflecting that the lesions are closely related to the connectivity of blood vessels. We design classification and localization modules that can be attached to arbitrary segmentation network. As blood vessels are segmented, both modules simultaneously predict the presence and location of lesions for each transverse slice. By combining outputs from the two modules, we devise a simple operation that boosts the performance of lesion localization. Experimental results show that lesion prediction and localization performance is improved by incorporating blood vessel extraction. Our ablation study demonstrates that the proposed operation enhances lesion localization accuracy. We also verify the effectiveness of multi-task learning by comparing our approach with those that individually detect lesions with extracted blood vessels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.