Abstract

Neural representations of perceptual decision formation that are abstracted from specific motor requirements have previously been identified in humans using non-invasive electrophysiology; however, it is currently unclear where these originate in the brain. Here we capitalized on the high spatiotemporal precision of intracranial EEG to localize such abstract decision signals. Participants undergoing invasive electrophysiological monitoring for epilepsy were asked to judge the direction of random-dot stimuli and respond either with a speeded button press (N = 24), or vocally, after a randomized delay (N = 12). We found a widely distributed motor-independent network of regions where high-frequency activity exhibited key characteristics consistent with evidence accumulation, including a gradual buildup that was modulated by the strength of the sensory evidence, and an amplitude that predicted participants' choice accuracy and response time. Our findings offer a new view on the brain networks governing human decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call