Abstract

The dynamic response of the human brain subjected to impulsive loading conditions is of fundamental importance to the understanding of traumatic brain injuries. Due to the complexity of such measurements, the existing experimental datasets available to researchers are sparse. However, these measurements are used extensively in the validation of complex finite element models used in the design of protective equipment and the development of injury mitigation strategies. The primary objective of this study was to develop a comprehensive methodology to measure displacement in specific anatomical regions of the brain. A state-of-the-art high-speed cineradiography system was used to capture brain motion in post-mortem human surrogate specimens at a rate of 7500fps. This paper describes the methodology used to capture these data and presents measurements from these tests. Two-dimensional displacement fields are presented and analyzed based on anatomical regions of the brain. These data demonstrated a multi-modal displacement response in several regions of the brain. The full response of the brain consisted of an elastic superposition of a series of bulk rotations of the brain about its centre of gravity. The displacement field could be linked directly to specific anatomical regions. The methods presented mark an improvement in temporal and spatial resolution of data collection, which has implications for our developing understanding of brain trauma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call