Abstract

BackgroundActivation of adenosine A1 receptors has neuroprotective effects in animal stroke models. Adenosine levels are regulated by nucleoside transporters. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1) decreases extracellular adenosine levels and adenosine A1 receptor activity. In this study, we tested the effect of hENT1 expression on cortical infarct size following intracerebral injection of the vasoconstrictor endothelin-1 (ET-1) or saline.MethodsMice underwent stereotaxic intracortical injection of ET-1 (1 μl; 400 pmol) or saline (1 μl). Some mice received the adenosine receptor antagonist caffeine (25 mg/kg, intraperitoneal) 30 minutes prior to ET-1. Perfusion and T2-weighted magnetic resonance imaging (MRI) were used to measure cerebral blood flow (CBF) and subsequent infarct size, respectively.ResultsET-1 reduced CBF at the injection site to 7.3 ± 1.3% (n = 12) in hENT1 transgenic (Tg) and 12.5 ± 2.0% (n = 13) in wild type (Wt) mice. At 48 hours following ET-1 injection, CBF was partially restored to 35.8 ± 4.5% in Tg and to 45.2 ± 6.3% in Wt mice; infarct sizes were significantly greater in Tg (9 ± 1.1 mm3) than Wt (5.4 ± 0.8 mm3) mice. Saline-treated Tg and Wt mice had modest decreases in CBF and infarcts were less than 1 mm3. For mice treated with caffeine, CBF values and infarct sizes were not significantly different between Tg and Wt mice.ConclusionsET-1 produced greater ischemic injury in hENT1 Tg than in Wt mice. This genotype difference was not observed in mice that had received caffeine. These data indicate that hENT1 Tg mice have reduced ischemia-evoked increases in adenosine receptor activity compared to Wt mice.

Highlights

  • Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models

  • Follow-up pair-wise comparisons indicated that ET-1 produced a greater decrease in cerebral blood flow (CBF) than saline, and a genotype difference was observed in mice injected with saline (p < 0.05) but not in mice injected with ET-1

  • Analysis of contralateral CBF at 4 hours indicated a significant effect of genotype (F(1,29) = 7.01, p < 0.05) and a significant drug effect (F(1,29) = 10.6, p < 0.01) as ET-1 produced a greater decrease in contralateral CBF in human equilibrative nucleoside transporter 1 (hENT1) Tg mice than in wild type (Wt) littermates (Figure 2, inset)

Read more

Summary

Introduction

Activation of adenosine A1 receptors has neuroprotective effects in animal stroke models. In vitro studies showed that neuron-specific expression of human equilibrative nucleoside transporter 1 (hENT1) decreases extracellular adenosine levels and adenosine A1 receptor activity. Equilibrative nucleoside transporters (ENT) mediate cellular influx or efflux of adenosine and other nucleosides as dictated by their concentration gradients [5]. During pathophysiological events such as stroke or brain trauma, adenosine levels can increase up to 100-fold; the origin of this adenosine has been addressed in vitro using pharmacological tools but little information from in vivo studies is available [6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call