Abstract

Mesenchymal precursor cells (MPCs) are a specific Stro-3+ subpopulation of mesenchymal stem cells isolated from bone marrow. MPCs exert extensive cardioprotective effects, and are considered to be immune privileged. This study assessed the safety, feasibility, and efficacy of intracoronary delivery of allogeneic MPCs directly after acute myocardial infarction in sheep. Initially, intracoronary delivery conditions were optimized in 20 sheep. These conditions were applied in a randomized study of 68 sheep with an anterior acute myocardial infarction. Coronary flow was monitored during MPC infusion, and cardiac function was assessed using invasive hemodynamics and echocardiography at baseline and during 8 weeks follow-up. Coronary flow remained within thrombolysis in myocardial infarction III definitions in all sheep during MPC infusion. Global left ventricular ejection fraction as measured by pressure-volume loop analysis deteriorated in controls to 40.7±2.6% after 8 weeks. In contrast, MPC treatment improved cardiac function to 52.8±0.7%. Echocardiography revealed significant improvement of both global and regional cardiac functions. Infarct size decreased by 40% in treated sheep, whereas infarct and border zone thickness were enhanced. Left ventricular adverse remodeling was abrogated by MPC therapy, resulting in a marked reduction of left ventricular volumes. Blood vessel density increased by >50% in the infarct and border areas. Compensatory cardiomyocyte hypertrophy was reduced in border and remote segments, accompanied by reduced collagen deposition and apoptosis. No microinfarctions in remote myocardial segments or histological abnormalities in unrelated organs were found. Intracoronary infusion of allogeneic MPCs is safe, feasible, and markedly effective in a large animal model of acute myocardial infarction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.