Abstract

BackgroundThe frequency dependent contributions of the various bone conduction pathways are poorly understood, especially the fluid pathway. The aim of this work is to measure and investigate sound pressure propagation from the intracranial space to the cochlear fluid. MethodsStimulation was provided sequentially to the bone (BC) or directly to the intracranial contents (hydrodynamic conduction, or HC) in four cadaver heads, where each ear was tested individually, for a total of 8 samples. Intracranial pressure was generated and monitored via commercial hydrophones, while the intracochlear sound pressure (ICSP) levels were monitored via custom-made intracochlear acoustic receivers (ICAR). In parallel, measurements of the 3D motion of the cochlear promontory and stapes were made via 3D Laser Doppler Vibrometer (3D LDV). ResultsReliability of the intracochlear sound pressure measurements depends on the immobilization of the ICAR relative to the otic capsule. Regardless of the significant differences in absolute stapes and promontory motion, the ratios between the otic capsule velocity, the stapes volume velocity (relative to the cochlea), and the intracochlear pressure were very similar under BC and HC stimulus. Under HC, the cochlear fluid appears be activated by an osseous pathway, rather than a direct non-osseous pathway from the cerebrospinal fluid (CSF), however, the osseous pathway itself is activated by the CSF pressure. ConclusionsData suggests that the skull bone surrounding the brain and CSF could play a role in the interaction between the two CSF and the cochlea, under both stimulation conditions, at high frequencies, while inertia is dominant factor at low frequencies. Further work should be focused on the investigation of the solid-fluid interaction between the skull bone walls and the intracranial content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call