Abstract

Brainstem response audiometry for intracochlear electrical stimulation of normal-hearing and deafened cats was investigated. In normal cochleas the brainstem response amplitude grew slowly near threshold as a current-amplitude dependent process, identified as electrophonic in origin. This terminated in a rapidly growing charge-dependent process at approximately 20 dB above threshold, identified as direct electrical stimulation of the auditory nerve. Small levels of white noise (25-35 dB SPL) were sufficient to mask most of the electrophonic response, leaving the direct stimulation process essentially unmodified. In cochleas damaged with d.c. currents and loud sounds, only a rapidly growing charge-dependent process was observed which grew similarly to that in normal-hearing cats but occurred at lower currents. This indicates that possibly the electrical properties of the cochlea were altered in the deafening process, suggesting the inadequacy of normal animals as deaf models for electrical stimulation. Using the technique of derived brainstem responses, it was shown that direct electrical stimulus components were localized to the vicinity of the stimulus electrode with electrophonic components distributed more widely. However, at high currents there was some evidence of the stimulus spreading into the internal auditory meatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.