Abstract

Suppression of foreign body reaction, improvement of electrode-nerve interaction, and preservation of residual hearing are essential research topics in cochlear implantation. Intracochlear pharmaco- or cell-based therapies can open new horizons in this field. Local drug delivery strategies are desirable as higher local concentrations of agents can be realized and side effects can be minimized compared to systemic administrations. When administered locally at accessible, basal parts of the cochlea, drugs reach apical regions later and in much lower concentrations due to poor diffusion patterns in cochlear fluids. Therefore, new devices are needed to warrant rapid distribution of agents into all parts of the cochlea. Five patients received a deep intracochlear injection of triamcinolone with a specifically designed cochlear catheter during cochlear implantation right before inserting a cochlear implant electrode. As a measure for formation of fibrous tissue around the electrode, electrical impedances were measured in the operation room and over 4months thereafter. No adverse events were observed peri- and postoperatively. The handling of the device was easy. Severe damage to the microstructure of the cochlea was excluded as far as possible by cone beam computed tomography and vestibular testing. A delayed rise of the impedances was seen in the catheter group compared to controls over all regions of the cochlea. A statistical significance, however, was only obtained at the midregion of the cochlea. Consequently, the cochlear catheter is a safe and feasible device for local drug delivery of pharmaceutical agents into deeper regions of the cochlea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call