Abstract

Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are still not well understood. Here we examine an antibody-expressing Chinese hamster ovary (CHO) clone at single-cell resolution using flow cytometry and vectors, which couple light and heavy chain transcription to fluorescent markers. Expression variation has traditionally been attributed to genetic heterogeneity arising from random genomic integration of vector DNA. It follows that single cell cloning should yield a homogeneous cell population. We show, in fact, that expression in a clone can be surprisingly heterogeneous (standard deviation 50 to 70% of the mean), approaching the level of variation in mixed transfectant pools, and each antibody chain varies in tandem. Phenotypic variation is fully developed within just 18 days of cloning, yet is not entirely explained by measurement noise, cell size, or the cell cycle. By monitoring the dynamic response of subpopulations and subclones, we show that cells also undergo slow stochastic fluctuations in expression (half-life 2 to 11 generations). Non-genetic diversity may therefore play a greater role in clonal variation than previously thought. This also has unexpected implications for expression stability. Stochastic gene expression noise and selection bias lead to perturbations from steady state at the time of cloning. The resulting transient response as clones reestablish their expression distribution is not ordinarily accounted for but can contribute to declines in median expression over timescales of up to 50 days. Noise minimization may therefore be a novel strategy to reduce apparent expression instability and simplify cell line selection.

Highlights

  • Protein biologics are an important and growing segment of the drug industry with over US$80 billion in sales worldwide

  • Distribution of Expression Levels in a Clonal Population We utilized a pair of expression vectors developed for accelerated screening of monoclonal antibody producing cell lines by fluorescence-activated cell sorting (FACS) [44]

  • When establishing stable cell lines, considerable variation is observed between clones, which has traditionally been attributed to genetic heterogeneity in the transfectant pools from which the clones are isolated

Read more

Summary

Introduction

Protein biologics are an important and growing segment of the drug industry with over US$80 billion in sales worldwide. Chinese hamster ovary (CHO) cells [2], are generally employed as production hosts because simpler prokaryotic and eukaryotic expression systems lack suitable native glycosylation machinery and may not fold and secrete these biomolecules efficiently [3]. Despite their widespread use and commercial significance, two major issues remain unresolved in establishing productive mammalian cell lines, namely clonal heterogeneity [4] and expression instability [5]. Production cell lines are ‘cloned’, or derived from a single cell, in order to minimize heterogeneity (International Conference on Harmonisation (ICH), Guideline Q5D, 1997)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.