Abstract
BackgroundMating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei.ResultsWe investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest that many recombinants are non-viable after intraclonal mating.ConclusionWe have demonstrated intraclonal mating during fly transmission of T. b. brucei, contrary to previous findings that recombination occurs only when another strain is present. It is thus no longer possible to assume that T. b. brucei remains genetically unaltered after fly transmission.
Highlights
Mating in Trypanosoma brucei is a non-obligatory event, triggered by the cooccurrence of different strains in the salivary glands of the vector
Contrary to previous reports that intraclonal mating in Trypanosoma brucei is only associated with out-crossing
[4,5], we show here that recombinant trypanosomes are produced with relatively high frequency after fly transmission of a single strain
Summary
Mating in Trypanosoma brucei is a non-obligatory event, triggered by the cooccurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. The hypothesis put forward is that some kind of diffusible factor or pheromone is produced by trypanosomes on recognition of non-self, which triggers all trypanosomes in the vicinity to mate. A simple two-sex mating system was ruled out by the three-way cross carried out by Turner and colleagues [6], suggesting that the mating system of this diploid organism probably involves multiple mating types
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.