Abstract

The complex anatomy the of ovine cervix limits the success of transcervical artificial insemination in sheep, but Misoprostol (a PGE1 analogue) relaxes the cervix and facilitates transcervical artificial insemination. However, the mechanism by which Misoprostol causes cervical relaxation is not known. This study examined if intra-cervical Misoprostol altered the hyaluronan content and the mRNA expression of COX-2, LHR, or FSHR in the cervix of the estrus ewe. Estrus was synchronized in cyclic ewes with progestagen pessaries and 48h after sponge removal ewes were treated intra-cervically with 0 (controls), 200, or 400μg Misoprostol. Hyaluronan content was determined by ELISA and mRNA expression of LHR, FSHR, and COX-2 was analyzed by in situ hybridization using digoxigenin-11-uridine-5′-triphosphate labeled riboprobes. The hyaluronan content of the cervix was significantly higher in sheep that received 200 (P<0.05) or 400 (P<0.05) μg Misoprostol compared to controls. Moreover, it was significantly (P<0.05) higher in the vaginal region compared to mid and uterine regions. Misoprostol increased (P<0.05) the mRNA expression of LHR and COX-2 but not FSHR. The expression for all three genes was highest in the vaginal region and lowest in uterine region. The luminal epithelium and circular smooth muscle layers had higher (P<0.05) expression for LHR, FSHR, and COX-2 mRNAs, and the sub-epithelial stroma had the lowest (P<0.05). We propose that the intra-cervical application of Misoprostol induces the mRNA expression of LHR, FSHR, and COX-2 through a positive feedback loop. The data suggest that softening of the cervix by Misoprostol is caused by an increase in the hyaluronan content of the cervix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call