Abstract

Glucagon-related peptides, such as glucagon-like peptide (GLP)-1, GLP-2 and oxyntomodulin (OXM), are processed from an identical precursor proglucagon. In mammals, all of these peptides are suggested to be involved in the central regulation of food intake. We previously showed that intracerebroventricular administration of chicken OXM and GLP-1 significantly suppressed food intake in chicks. Here, we show that central administration of chicken GLP-2 potently suppresses food intake in chicks. Male 8-day-old chicks (Gallus gallus domesticus) were used in all experiments. Intracerebroventricular administration of chicken GLP-2 significantly suppressed food intake in chicks. Plasma glucose concentration was significantly decreased by chicken GLP-2, whereas plasma nonesterified fatty acid concentration was significantly increased. Intracerebroventricular administration of chicken GLP-2 did not affect plasma corticosterone concentration. In addition, the anorexigenic effect of GLP-2 was not reversed by the corticotropin-releasing factor (CRF) receptor antagonist α-helical CRF, suggesting that CRF is not a downstream mediator of the anorexigenic pathway of GLP-2 in chicks. Intracerebroventricular administration of an equimolar amount of GLP-1 and GLP-2, but not OXM, significantly suppressed food intake in both broiler and layer chicks. All our findings suggest that GLP-2 functions as a potent anorexigenic peptide in the brain, as well as GLP-1, in chicks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call