Abstract

Over the last decade, molecular biology has progressively developed, leading to new technology with subsequent clinical application for various cerebral diseases including Parkinson's disease (PD), one of the most investigated neurodegenerative disorders. The therapy for PD is mainly composed of medication, including drug replacement therapy, surgical treatment, and cell transplantation. Cell therapy for PD has been explored by using fetal nigral cells as an allo- or xenograft, autologous sympathetic ganglion, adrenal medulla, and carotid body in clinical settings. In addition, neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF), have a strong potency to rescue degenerating dopaminergic cells. Protein and/or gene therapy also might be a therapeutic option for PD. In this review, genetically engineered cell transplantation for animal models of PD, including catecholamine/neurotrophic factor-secreting cell transplantation with or without encapsulation, as performed in our laboratories, and their potential future as clinical applications are described with recent clinical studies in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.