Abstract

Intracerebral hemorrhage (ICH) is a high mortality rate, critical medical injury, produced by the rupture of a blood vessel of the vascular system inside the skull. ICH can lead to paralysis and even death. Therefore, it is considered a clinically dangerous disease that needs to be treated quickly. Thanks to the advancement in machine learning and the computing power of today’s microprocessors, deep learning has become an unbelievably valuable tool for detecting diseases, in particular from medical images. In this work, we are interested in differentiating computer tomography (CT) images of healthy brains and ICH using a ResNet-18, a deep residual convolutional neural network. In addition, the gradient-weighted class activation mapping (Grad-CAM) technique was employed to visually explore and understand the network’s decisions. The generalizability of the detector was assessed through a 100-iteration Monte Carlo cross-validation (80% of the data for training and 20% for test). In a database with 200 CT images of brains (100 with ICH and 100 without ICH), the detector yielded, on average, 95.93%accuracy, 96.20% specificity, 95.65% sensitivity, 96.40% precision, and 95.91% F1-core, with an average computing time of 165.90 s to train the network (on 160 images) and 1.17 s to test it with 40 CT images. These results are comparable with the state of the art with a simpler and lower computational load approach. Our detector could assist physicians in their medical decision, in resource optimization and in reducing the time and error in the diagnosis of ICH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.