Abstract

Salmonella spp. can infect host cells by gaining entry through phagocytosis or by inducing host cell membrane ruffling that facilitates bacterial uptake. With its wide host range, Salmonella enterica serovar Typhimurium has proven to be an important model organism for studying intracellular bacterial pathogenesis. Upon entry into host cells, serovar Typhimurium typically resides within a membrane-bound compartment termed the Salmonella-containing vacuole (SCV). From the SCV, serovar Typhimurium can inject several effector proteins that subvert many normal host cell systems, including endocytic trafficking, cytoskeletal rearrangements, lipid signaling and distribution, and innate and adaptive host defenses. The study of these intracellular events has been made possible through the use of various imaging techniques, ranging from classic methods of transmission electron microscopy to advanced livecell fluorescence confocal microscopy. In addition, DNA microarrays have now been used to provide a "snapshot" of global gene expression in serovar Typhimurium residing within the infected host cell. This review describes key aspects of Salmonella-induced subversion of host cell activities, providing examples of imaging that have been used to elucidate these events. Serovar Typhimurium engages specific host cell machinery from initial contact with the host cell to replication within the SCV. This continuous interaction with the host cell has likely contributed to the extensive arsenal that serovar Typhimurium now possesses, including two type III secretion systems, a range of ammunition in the form of TTSS effectors, and a complex genetic regulatory network that coordinates the expression of hundreds of virulence factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call