Abstract

Human Tamm-Horsfall glycoprotein (T-H), first described as the major urinary glycoprotein, is a glycosylphosphatidyl-inositol (GPI)-anchored membrane protein which mainly resides at the luminal face of cells of the thick ascending limb of Henle's loop (TAL) and early distal convoluted tubules of nephron. Since no human renal cell-line producing T-H is available, T-H cDNA was transfected in HeLa cells and a cell line was selected in which 95% of the cells stably expressed T-H, in order to elucidate the biosynthesis, mechanisms regulating the transport of T-H along the exocytic pathway, exposure at the cell surface and release in soluble form. Treatment of cells with an exogenous reducing agent results in a drastic delay in the conversion from precursor to mature T-H. Since the accumulating T-H-precursor carries glycans not yet processed by Golgi-mannosidases, we propose that the formation of a correct set of intrachain disulphide bonds is required for T-H exit out the endoplasmic reticulum. Even the treatment of cells with an inhibitor of GPI-anchor biosynthesis results in an intracellular accumulation of T-H precursor, loss of T-H localization into Golgi apparatus and reduced surface exposure. These results indicate that the GPI-anchor addition is necessary for T-H delivery to the cell-surface. The release rate of new synthesized T-H shows an initial lag time very likely depending on the time required for T-H surface exposure. A portion of released T-H appears to contain ethanolamine, a component of GPI anchor, indicating that, at least in HeLa cells, a GPI-specific phospholipase contributes to the T-H release. Exposure of cells to monensin and brefeldin A results in a loss of accumulation of T-H in the Golgi perinuclear region and a reduced delivery to the cell surface. Under monensin treatment an intermediate T-H form non-exposed at the cell surface is released in the medium, indicating that a soluble T-H may be produced inside the cell under conditions that alter the Golgi apparatus. If such an event occurs in polarized kidney cells, a T-H release from the basolateral face may be postulated, inasmuch as the GPI-anchor is an apical sorting signal. Since T-H is a powerful autoantigen, the accumulation of soluble T-H in the interstitium of TAL may cause the formation of immunocomplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.