Abstract
AbstractAge‐related macular degeneration (AMD) is a degenerative eye disease that primarily affects the macula. AMD is a leading cause of vision loss in individuals over the age of 65, particularly more common in Caucasians than in other racial groups. Cerium oxide nanoparticles (CNPs) have emerged as highly promising nanomaterials in the treatment of AMD due to their potent antioxidant properties. In pathological damages of AMD conditions, characterized by oxidative stress resulting from an overproduction of reactive oxygen species (ROS), CNPs possess significant promise for attenuating the pathogenic processes and advancing therapeutic interventions. Despite their potential clinical applications, the widespread use of CNPs is greatly hampered by limited water solubility, and concerns have arisen about their potential impact on normal ROS production in mitochondria. Here, the antioxidative activity of glycol chitosan‐coated CNPs (namely, GCCNPs) and their behavior in mouse primary RPE (mRPE) cells are reported through an in vitro trafficking study. This findings demonstrate that GCCNPs effectively neutralize excessive ROS and prefer to exclusively accumulate in cytosol without any uptake in the nucleus and mitochondria of the mRPE cells. Moreover, GCCNPs demonstrated therapeutic effects by reducing the ROS level in a laser‐induced choroidal neovascularization (CNV) AMD‐like murine model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.