Abstract

Cultured rat cerebellar granule cells are resistant to the excitotoxic effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor agonists under three conditions: 1) prior to day seven in vitro when cultured in depolarizing concentrations of potassium [25 mM]; 2) at any time in vitro when cultured in non-depolarizing concentrations of potassium 5 mM[; and 3) when neurons, cultured in depolarizing concentrations of potassium 25 mM[ for eight days in vitro, are pretreated with a subtoxic concentration of NMDA. The focus of this paper is to determine: a) whether the resistance to excitotoxicity by NMDA and non-NMDA receptor agonists is due to a decreased intracellular calcium Ca++[i response to glutamate receptor agonists in cultured rat cerebellar granule cells; or b) whether Ca++[i levels induced by the agonists are similar to those observed under excitotoxic conditions. Granule cells, matured in non-depolarizing growth medium, treated with glutamate resulted in an increase in Ca++[i followed by a plateau that remained above baseline in virtually all neurons that responded to glutamate. The response was rapid in onset (< 10 sec) and the pattern of response heterogeneous in that cells responsive to glutamate increased their Ca++[i to different extents; some cells did not respond to glutamate. Kainate also produced significant elevations in Ca++[i. The Ca++[i response to glutamate in neurons matured in depolarizing (25 mM K+) growth medium for three days was rapid, transient and heterogeneous, which reached a plateau that was elevated above baseline levels; removing the glutamate markedly reduced the Ca++[i concentration. Activation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors by kainic acid produced similar changes in Ca++[i responses. At a time when cultured cerebellar granule cells become susceptible to the excitotoxic effects of glutamate acting at NMDA receptors (day in vitro (DIV) 8) in depolarizing growth medium, glutamate elicited Ca++[i responses similar to those observed at a culture time when the neurons are not susceptible to the excitotoxic effects of glutamate (DIV 3). Pretreatment of the cultured neurons with a subtoxic concentration of NMDA, which protects all neurons against the excitotoxic effects of glutamate, did not alter the maximal Ca++[i elicited by an excitotoxic concentration of glutamate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call