Abstract

Staphylococcus aureus (S. aureus) has the ability to invade human cortical bones and cause intracellular infections in osteoblasts, which may lead to a long-term infection that is difficult to eliminate. It is critical to identify the underlying mechanisms of the osteoblast response to the intracellular S. aureus. More recently, multiple circular RNA (circRNA) functions have been identified, including serving as protein scaffolds or miRNA sponges and being translated into polypeptides. The role that circRNAs play in intracellular S. aureus infection of osteoblasts has not, to our knowledge, been investigated. Here, we established an intracellular infection model of S. aureus in osteoblasts and compared the circRNA expression of osteoblasts between the infected and control groups using RNA sequencing technology, by which a significant difference was found. In total, 117 upregulated and 125 down-regulated differentially expressed circRNAs (DEcircRNAs) were identified, and reverse transcription-quantitative PCR was employed to validate the results of RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that DEcircRNAs were enriched in processes associated with macromolecule modification, cellular component organization or biogenesis, and intracellular non-membrane-bound organelles. Finally, a potentially important network of circRNA-miRNA-mRNA based on the DEcircRNAs was constructed. Overall, this study revealed the circRNA expression profile of human osteoblasts infected by intracellular S. aureus for the first time, and identified the circRNAs that may contribute to the pathogenesis of infectious diseases caused by intracellular S. aureus infection in human osteoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call