Abstract

Proliferation of ependymal cells of the adult spinal cord (SCEp cells) in the intact condition has been considered as a quite rare event. To visualize proliferating/proliferated SCEp cells, we used the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method to find that about two cells in the ependymal layer incorporated BrdU in a 10-μm-thick section. Because these two cells were not considered to undergo further proliferation, we analyzed the positioning and motility of two neighboring BrdU-incorporated proliferated cells and elucidated the tendency of the movement of SCEp cells to the outer side inside the ependymal layer. Even if it was rare, one of the proliferated cells in the ependymal layer differentiated into astrocytes. Gene introduction of Notch intracellular domain (NICD), a constitutively active form of Notch1, into SCEp cells demonstrated both increase in proliferation and induction of differentiation into astrocytes. Overexpression of Sox2 promoted proliferation in SCEp cells. The reaction of gene introduction of NICD and Sox2 indicates the similarity of intracellular signaling between SCEp cells and neural stem cells. Also, considering the fact that SCEp cells express these two factors in the intact condition, Notch and Sox2 are important for the cell fate control of SCEp cells in the intact condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.