Abstract

Platelet-activating factor (PAF) and lysophosphatidic acid (LPA) are ubiquitous lipid mediators that play important roles in inflammation, cardiovascular homeostasis, and immunity and are also known to modulate gene expression of specific proinflammatory genes. The mechanism of action of these phospholipids is thought to be primarily dependent on their specific plasma membrane receptors belonging to the superfamily of G protein-coupled receptors (GPCRs). However, increasing evidence suggests the existence of a functional intracellular GPCR population. It has been suggested that immediate effects are mediated by cell surface receptors, whereas long-term responses are mediated by intracellular receptors. PAF and LPA(1) receptors localize at the cell nucleus of cerebral microvascular endothelial cells of newborn pig, rat hepatocytes, and cells overexpressing each receptor, and stimulation of isolated nuclei reveal biological functions, including transcriptional regulation of major genes, namely cylooxygenase-2 and inducible nitric oxide synthase. This mini review focuses on the nuclear localization and signaling of GPCRs, recognizing PAF and LPA phospholipids as ligands. Theories on how nuclear PAF and LPA1 receptors activate gene transcription and nuclear localization pathways are discussed. Intracrine signaling for lipid mediators uncover novel pathways to elicit their effects; moreover, intracellular GPCRs constitute a distinctive mode of action for gene regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.