Abstract
It was previously reported that low initial ammonium (2 mM) in medium had significant stimulating effects on the biosynthesis of taxuyunnanine C (Tc) by Taxus chinensis cells. However, the secondary metabolism induction mechanism of the low initial ammonium is yet unknown in plant cells. To provide an insight into the defense signals response to the low initial ammonium, oxidative burst and intracellular salicylic acid (SA) were detected, and their influences on the expression of important genes in taxoid biosynthetic pathway were examined in the cell cultures of T. chinensis. Induced H(2)O(2) production, elevated phenylalanine ammonia-lyase (PAL) activity, and enhanced SA biosynthesis were observed. Interestingly, inhibition of SA biosynthesis by paclobutrazol and (BOC-aminooxy) acetic acid significantly depressed the Tc stimulation and up-regulation of Tc biosynthetic genes of geranylgeranyl diphosphate synthase and taxadiene synthase. The role of intracellular SA in regulating Tc biosynthesis was further confirmed by applying exogenous SA in normal ammonium (20 mM) medium. The results indicated that SA acted as a signal in low initial ammonium-induced Tc biosynthesis. A signal transduction cascade from defense signal response to activated transcription of taxoid biosynthetic genes and enhanced Tc production is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Microbiology and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.