Abstract

ABSTRACT Objectives Reactive oxygen species (ROS) are under scrutiny as a participant in the pathophysiology of myelodysplastic syndrome (MDS) and the progression of MDS to acute myeloid leukemia (AML). Measurement of intracellular ROS (iROS) is particularly important since iROS is a direct indicator of cellular health and integrity. Methods We developed a technique to measure standardize iROS (siROS) level in lymphocytes and bone marrow (BM) CD34+ hematopoietic progenitors using the fluorescent probe dichlorofluorescein (DCF). We then quantified the siROS in 38 consecutive BM specimens from 27 MDS patients over the course of 10 months. Disease outcome of these patients were also assessed. Results High serum ferritin, high blast count and poor IPSS were associated with inferior survival and AML progression in this cohort. High blast MDS patients had lower siROS in their BM CD34+ cells than those of low blast patients, consistent with increased reliance on glycolysis and enhanced ROS defense in high blast MDS. We also observed narrower siROS distribution in the BM CD34+ cells of high blast patients, suggesting that loss of heterogeneity in ROS content accompanies the clonal evolution of MDS. Furthermore, we observed a strong correlation between CD34+ cells siROS and serum ferritin level in high blast patients. In one case, iron chelation therapy (ICT) resulted in parallel decreases in serum ferritin and CD34+ cells siROS. Conclusion Our findings established the siROS profile in early hematopoietic cells of MDS patients and its relationship with blast count and iron overload.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call