Abstract
Protein–membrane interactions play key roles in essential cellular processes; studying these interactions in the cell is a challenging task of modern biophysical chemistry. A prominent example is the interaction of human α-synuclein (αS) with negatively charged membranes. It has been well-studied in vitro, but in spite of the huge amount of lipid membranes in the crowded environment of biological cells, to date, no interactions have been detected in cells. Here, we use rapid-scan (RS) electron paramagnetic resonance (EPR) spectroscopy to study αS interactions with negatively charged vesicles in vitro and upon transfection of the protein and lipid vesicles into model cells, i.e., oocytes of Xenopus laevis. We show that protein–vesicle interactions are reflected in RS spectra in vitro and in cells, which enables time-resolved monitoring of protein–membrane interaction upon transfection into cells. Our data suggest binding of a small fraction of αS to endogenous membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.