Abstract
Polyamines and their acetylated derivatives are a prerequisite for cellular metabolism and considered to be essential for proliferation and differentiation of the rapidly renewing intestinal mucosa. However, their role during mucosal inflammation is less clear. Polyamine concentrations were determined in isolated colonic epithelial cells (CECs) from endoscopic biopsies from 26 patients with inflammatory bowel disease (IBD) and 40 controls as well as colon samples from mice with and without acute or chronic dextran sodium sulfate (DSS)-induced colitis. In patients with ulcerative colitis, CEC spermidine and N8-acetylspermidine levels were significantly enhanced and spermine levels were reduced compared with healthy controls. A correlation of polyamine levels of patients with IBD with their corresponding inflammatory index revealed that increased concentrations of spermidine, N8-acetylspermidine, and N1-acetylspermine were found in CECs from the most severe inflamed mucosal areas. Using acute and chronic DSS colitis as a model of mucosal inflammation, we found enhanced levels of spermidine and spermine in acute colitis, whereas in chronic inflammation, CEC spermine concentrations were decreased. Our data indicate a lack of the anti-inflammatory polyamine spermine in severe ulcerative colitis and chronic DSS colitis, which may aggravate the disease. Increased spermidine and N8-acetylspermidine levels reflect increased uptake and metabolism likely due to accelerated proliferation and regeneration of CECs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.