Abstract

A kind of smart carbon nanodots (CNDs) with the pH response feature was prepared by the one-pot hydrothermal treatment of citric acid and dicyandiamide, which was used for the differentiation of cancer/normal cells and the selective photothermal therapy (PTT) of cancer cells. When the smart CNDs were cultured with cells, they were highly internalized in the lysosomes of cells. Since the small-sized CNDs (about 5 nm) tends to form aggregation (as large as about 20 nm or even larger) under an acid condition (pH = 4.7) due to the electrostatic attraction produced by the surface protonation, relatively severer aggregation of the CNDs were observed in liver cancer cells (HepG2 cells) relative to normal ones (LO2 cells) due to a relative lower pH in the lysosomes of HepG2 cells, which endows them a new strong absorption band at longer wavelengths (450−900 nm) and a higher photothermal conversion efficiency (42.13 %), benefiting to differentiated PTT. The flow cytometric data indicates strong photothermal ablation (8 min, 509.6 mW/cm2) for cancer cells with the assistance of these smart CNDs achieves 82 % death rate of cancer cells, while much less damage is observed on the normal cells (6.35 %). To the best of our knowledge, this is the first report about CNDs for selective PTT owing to their intrinsic property without the aid of any other targeting ligands. These smart CNDs are also available for other acid-responsive sensing systems, and this study inspires us in the synthesis of near-infrared featured carbon materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.