Abstract

Changes of the intracellular pH of rat diaphragm muscle were monitored at 30-min intervals with the weak acid DMO (5,5-dimethyl-2,4-oxazolidinedione). Transferring the muscle from a CO2-containing to a CO2-free solution caused intracellular pH (pHi) to rise by an average of 0.18 during the first 30 min and then to level off at a slightly lower value over the next 60-90 min. Transferring the muscle from a CO2-free to a CO2-containing solution caused pHi to fall by 0.18 during the first 30 min and then to recover by 0.05 over the next 90 min. Subsequent return to the CO2-free solution caused pHi to overshoot the control value by 0.10. Both the recovery and the overshoot can be accounted for by an acid-extruding pump. Intracellular acid loading with 118 mM DMO similarly caused pHi to fall initially, to recover slowly during the acid loading, and then to overshoot the control pHi on removal of the acid load. In the absence of HCO3-/CO2, acid extrusion was reduced by about a fifth. SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid) had no effect. The absence of either Na+ or Cl- from HCO3-/CO2- free solution reduced acid extrusion by about a half.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.