Abstract

Pancreatic acini loaded with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to examine the effect of Ca2(+)-mobilizing agonists on the activity of acid-base transporters in these cells. In the accompanying article (Muallen, S., and Loessberg, P. A. (1990) J. Biol. Chem. 265, 12813-12819) we showed that in 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)-buffered medium the main pHi regulatory mechanism is the Na+/H+ exchanger, a while in HCO3(-)-buffered medium pHi is determined by the combined activities of a Na+/H+ exchanger, a Na(+)-HCO3- cotransporter and a Cl-/HCO3- exchanger. In this study we found that stimulation of acini with Ca2(+)-mobilizing agonists in HEPES or HCO3(-)-buffered media is followed by an initial acidification which is independent of any identified plasma membrane-located acid-base transporting mechanism, and thus may represent intracellularly produced acid. In HEPES-buffered medium there was a subsequent large alkalinization to pHi above that in resting cells, which could be attributed to the Na+/H+ exchanger. Measurements of the rate of recovery from acid load indicated that the Na+/H+ exchanger was stimulated by the agonists. In HCO3(-)-buffered medium the alkalinization observed after the initial acidification was greatly attenuated. Examination of the activity of each acid-base transporting mechanism in stimulated acini showed that in HCO3(-)-buffered medium: (a) recovery from acid load in the presence of H2-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2DIDS) (Na+/H+ exchange) was stimulated similar to that found in HEPES-buffered medium; (b) recovery from acid load in the presence of amiloride and acidification due to removal of external Na+ in the presence of amiloride (HCO3- influx and efflux, respectively, by Na(+)-HCO3- cotransport) were inhibited; and (c) HCO3- influx and efflux due to Cl-/HCO3- exchange, which was measured by changing the Cl- or HCO3- gradients across the plasma membrane, were stimulated. Furthermore, the rate of Cl-/HCO3- exchange in stimulated acini was higher than the sum of H+ efflux due to Na+/H+ exchange and HCO3- influx due to Na(+)-HCO3- cotransport. Use of H2DIDS showed that the latter accounted for the attenuated changes in pHi in HCO3(-)-buffered medium, as much as treating the acini with H2DIDS resulted in similar agonist-mediated pHi changes in HEPES- and HCO3(-)-buffered media. The effect of agonists on the various acid-base transporting mechanisms is discussed in terms of their possible role in transcellular NaCl transport, cell volume regulation, and cell proliferation in pancreatic acini.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.