Abstract

P2X receptors are calcium permeable ligand-gated ion channels activated by ATP. Their role as cell surface receptors for extracellular ATP released physiologically by mammalian cells is well established. However, the cellular function of P2X receptor subtypes that populate the membranes of intracellular compartments is not defined. An initial report described how intracellular P2X receptors control the function of the contractile vacuole, an osmoregulatory organelle in Dictyostelium and other protists, and that genetic disruption of P2X receptors severely impaired cell volume control during hypotonic stress. However, later studies refuted a functional role of intracellular P2X receptors in Dictyostelium. Here we provide evidence that the discrepancies reported between the studies are due to the laboratory strain of Dictyostelium employed, which display different phenotypes in response to hypotonic stress and a varied dependency upon P2X receptors for osmoregulation. We use the recent discovery that intracellular P2X receptors are novel calcium release channels to provide some mechanistic insight in an effort to explain why the strain variance may exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.