Abstract

MicroRNA (miRNA) represents a class of important potential biomarkers, and their intracellular imaging is extremely useful for fundamental research and early diagnosis of human cancers. Hybridization chain reaction (HCR) has been shown to be effective in detecting miRNA in living cells. However, its practical applications are still hampered by inefficient reaction kinetics and poor biological stability under complex intracellular conditions. To address these issues, we report a palindrome-mediated multiple hybridization chain reaction (P-HCR) system to better visualize intracellular miRNAs. In the presence of the target miRNA, a layered nanosheet DNA architecture (LSDA) can be assembled in situ via the palindrome-mediated multiple HCR process. We demonstrate that the biological stability of this reaction system could be significantly improved by designing the probes to dumbbell-shaped structures and the distance of hairpins was effectively decreased due to palindrome-chained effect. Consequently, miRNA can be quantitatively identified even at extremely low concentrations of 4.7 pM. The P-HCR system can effectively differentiate the expression levels of miRNA in different tumor cells and normal cells, as demonstrated in live cell tests and the results were in agreement with the PCR, which is considered the gold standard. The new (P-HCR) system has the potential to revolutionize miRNA imaging in living cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.