Abstract

We studied the effects of Na(+) influx on large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na(+) replacement by NMDG(+) or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na(+) concentration ([Na(+)](i)) and vice versa. In addition, extracellular Na(+) depletion decreased [Na(+)](i). In voltage-clamped cells, BK(Ca) currents were markedly increased by extracellular Na(+) depletion. In inside-out patches, increasing [Na(+)](i) from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BK(Ca) channels and decreasing intracellular K(+) concentration ([K(+)](i)) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na(+)](i) gradually from 0 to 70 mM, by replacing K(+), markedly reduced single channel conductance and NPo. The Na(+)-Ca(2+) exchange blocker Ni(2+) or KB-R7943 decreased [Na(+)](i) and increased BK(Ca) currents simultaneously, and the Na(+) ionophore monensin completely inhibited BK(Ca) currents. BK(Ca) currents were significantly augmented by increasing extracellular K(+) concentration ([K(+)](o)) from 6 to 12 mM and significantly reduced by decreasing [K(+)](o) from 12 or 6 to 0 mM or applying the Na(+)-K(+) pump inhibitor ouabain. These results suggest that intracellular Na(+) inhibit single channel conductance of BK(Ca) channels and that intracellular K(+) increases single channel conductance and NPo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call