Abstract

The effects of direct and indirect electrical stimulation on intracellular potassium and sodium contents ([K] i and [Na] i, respectively) in rat soleus muscle (SOL) and extensor digitorum longus muscle (EDL) were investigated under in vivo conditions. The changes of [K] i and [Na] i contents in both muscles which were stimulated indirectly reached respective values at 30 min or 1 hr after the beginning of stimulation, whereas those of EDL stimulated with 60 Hz changed gradually through 2 hr stimulation. The shifts of [K] i and [Na] i in EDL occurred during the twitch contraction at considerably lower frequency stimulation (0.5–10 Hz), whereas those in SOL were observed during the tetanus contraction at high frequency stimulation (10–40 Hz). The difference of change in cationic shifts between EDL and SOL under low frequency stimulation was reduced by ouabain treatment, though the difference was still significant. When the muscles were indirectly stimulated 6000 times at 1,5,10 and 20 Hz, the cationic shifts in EDL were greater than those in SOL, extending over all frequencies. It was concluded that such a difference in ionic shift between contracting EDL and SOL may be primarily due to the difference in unidirectional ionic fluxes per stimulation and, secondly, to the difference in Na +-K + pump activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.