Abstract

Nanocarrier-mediated delivery and release of short non-coding RNA (e.g., miRNA or siRNA) into the cells with subsequent suppression of the populations of some of the mRNAs and proteins is of interest in the context of the development of a new generation of drugs. Bearing in mind such applications, the author shows the specifics of the corresponding transient kinetics by using three generic models without and with feedback resulting in bistability in the gene expression. In the absence of feedback, the suppression of the mRNA and protein population is transient. In the case of bistable kinetics, non-coding RNA can induce transition from the initial steady state to another steady state. The duration of this transition can be much longer than the time scale characterizing the drop of the non-coding RNA population. Quantitatively, the effect of the delivered non-coding RNA on gene expression can be appreciable if the maximum non-coding RNA population in the cytoplasm is comparable to or above 1000. All these conclusions have been drawn on the basis of calculations performed with the kinetic parameters typical for human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.