Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization that creates time-dependent, inward rectifying currents, gated by the movement of the intrinsic voltage sensor S4. However, inward rectification of the HCN currents is not only observed in the time-dependent HCN currents, but also in the instantaneous HCN tail currents. Inward rectification can also be seen in mutant HCN channels that have mainly time-independent currents (5). In the present study, we show that intracellular Mg(2+) functions as a voltage-dependent blocker of HCN channels, acting to reduce the outward currents. The affinity of HCN channels for Mg(2+) is in the physiological range, with Mg(2+) binding with an IC(50) of 0.53 mM in HCN2 channels and 0.82 mM in HCN1 channels at +50 mV. The effective electrical distance for the Mg(2+) binding site was found to be 0.19 for HCN1 channels, suggesting that the binding site is in the pore. Removing a cysteine in the selectivity filter of HCN1 channels reduced the affinity for Mg(2+), suggesting that this residue forms part of the binding site deep within the pore. Our results suggest that Mg(2+) acts as a voltage-dependent pore blocker and, therefore, reduces outward currents through HCN channels. The pore-blocking action of Mg(2+) may play an important physiological role, especially for the slowly gating HCN2 and HCN4 channels. Mg(2+) could potentially block outward hyperpolarizing HCN currents at the plateau of action potentials, thus preventing a premature termination of the action potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.