Abstract

Receptor-mediated formation of inositol 1,4,5-trisphosphate (IP3) can induce an outward Ca(2+)-activated K+ current [IK(Ca)] in some neural cells. We have investigated IK(Ca) activated by intracellular injections of IP3 in whole-cell patch-clamped neuroblastoma x glioma hybrid cells. The current could only be recorded reliably using citrate as the anion in the pipette, but not using acetate, aspartate, chloride, fluoride, gluconate or methylsulphate. This could be attributed to buffering of intracellular Mg2+ by citrate. Theoretical calculations suggested free [Mg2+] of 1.0 and 0.07 mM respectively in the acetate- and citrate-based recording solutions. Further, IP3-activated IK(Ca) could be recorded when the free Mg2+ level in the acetate, chloride or methylsulphate solutions was lowered to the range (0.05 mM) calculated for the citrate solution. Thus, raised [Mg2+] blocks IK(Ca). This appeared to be due to inhibition of the response to released Ca2+, since high [Mg2+] also blocked the response to intracellular injections of Ca2+ ions. Mean Mg2+ levels in intact neuroblastoma x glioma hybrid cells measured by Mag-Indo-1/AM fluorescence were estimated to be less than 0.14 mM. We therefore conclude that IP3-induced IK(Ca) is expressed under normal conditions, but may be subject to regulation by intracellular Mg2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.