Abstract

The changes in 32P labeling of phosphoproteins were studied in Langendorff-perfused guinea pig hearts during reversal of the stimulatory effects of isoproterenol. Exposure of the hearts to isoproterenol was associated with significant increases in adenosine 3',5'-cyclic monophosphate (cAMP) levels and in the phosphate incorporation into phospholamban in sarcoplasmic reticulum, the 15-kDa protein in the sarcolemma, and troponin I in the myofibrils. Phospholamban was phosphorylated on serine and threonine residues, both of which are sites for cAMP-dependent and Ca(2+)-calmodulin-dependent protein kinases, respectively. Termination of isoproterenol infusion was associated with reversal of the mechanical effects of isoproterenol stimulation and reversal of the increases in tissue cAMP levels. However, the decreases in cAMP levels correlated only with dephosphorylation of phosphoserine in phospholamban. Dephosphorylation of phosphothreonine in phospholamban, the 15-kDa sarcolemmal protein, and troponin I occurred at a slower rate. These findings suggest that cAMP-dependent phosphorylation of phospholamban (phosphoserine) may play a prominent role during beta-adrenergic stimulation of intact hearts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call