Abstract

The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu-GnRH molecule including specific pattern of intracellular activity induced by complex in anterior pituitary cells in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.