Abstract
The presence of maltose induces M4L gene expression in Saccharomyces cells, but little is known abouthow maltose is sensed. Strains with all maltose permease genes deleted are unable to induce MAL geneexpression. In this study, we examined the role of maltose permease in maltose sensing by substituting a heterologous transporter for the native maltose permease. PmSUC2 encodes a sucrose transporter from the dicot plant Plantago major that exhibits no significant sequence homology to maltose permease. When expressed in Saccharomyces cerevisiae, PmSUC2 is capable of transporting maltose, albeit at a reduced rate. We showed that introduction of PmSUC2 restores maltose-inducible MAL gene expression to a maltose permease-null mutant and that this induction requires the MAL activator. These data indicate that intracellular maltose is sufficient to induce MAL gene expression independently of the mechanism of maltose transport. By usingstrains expressing defective mal61 mutant alleles, we demonstrated a correlation between the rate of maltose transport and the level of the induction, which is particularly evident in medium containing very limiting concentrations of maltose. Moreover, our results indicate that a rather low concentration of intracellular maltose is needed to trigger MAL gene expression. We also showed that constitutive overexpression of either MAL61 maltose permease or PmSUC2 suppresses the noninducible phenotype of a defective mal13 MAL-activator allele, suggesting that this suppression is solely a function of maltose transport activity and is not specific to the sequence of the permease. Our studies indicate that maltose permease does not function as the maltose sensor in S. cerevisiae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.