Abstract

Baculovirus has been widely used for foreign protein expression in biomedical studies, and budded virus (BV) surface display has developed into an important research tool for heterogenous membrane protein studies. The basic strategy of surface display is to construct a recombinant virus where the target gene is fused with a complete or partial gp64 gene. In this study, we further investigate and develop this BV surface displaying strategy. We constructed stable insect cell lines to express the target protein flanking with different regions of signal peptide (SP) and GP64 transmembrane domain (TMD). Subsequently, recombinant BmNPV was used to infect the cell, and the integration of heterogeneous protein into BV was detected. The results indicated that deletion of the n-region of SP (SPΔn) decreased the incorporation rate more than that of the full-length SP. However, the incorporation rate of the protein fused with h and c-region deletion of SP (SPΔh-c) was significantly enhanced by 35-40 times compare to full-length SP. Moreover, the foreign protein without SP and TMD failed to display on the BV, while the integration of foreign proteins with GP64 TMD fusion at the c-terminal was significantly enhanced by 12-26 times compared to the control. Thus, these new strategies developed the BV surface display system further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call