Abstract
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.
Highlights
Tetrodotoxin (TTX) is a potent non-protein neurotoxin that selectively targets and blocks voltage-gated sodium channels
Numerous researchers have suggested that the incidence of TTX in so many genetically unrelated organisms is due to an exogenous source such as symbiotic bacterial production or bioaccumulation through diet [2,7,8,9]
The pink color of the tear-shaped cells in both the Hematoxylin & Eosin (H&E) and the Alcian Blue–Periodic Acid Schiff (AB–PAS) stained sections reveal that these erythrophil cells secrete neutral mucin, suggesting that cells responsible for the acidity of the mantle and sequestration of TTX are separate
Summary
Tetrodotoxin (TTX) is a potent non-protein neurotoxin that selectively targets and blocks voltage-gated sodium channels It is most notably found in the tissues of pufferfish species from the Tetraodontidae family [1,2]. Studies using chemical methods to detect TTX have shown sequestration of toxin varies among tissue types in many organisms [2]. In this study immunohistological techniques, in conjunction with the T20G10 anti-TTX monoclonal antibody (mAB) [30], were used to investigate the micro-distributions of TTX within each organism at the cellular level. These data may provide insights on ecological function and the source of TTX in these organisms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.