Abstract
Many insects survive internal ice formation. The general model of freeze tolerance is of extracellular ice formation (EIF) whereby ice formation in the haemocoel leads to osmotic dehydration of the cells, whose contents remain unfrozen. However, survivable intracellular ice formation (IIF) has been reported in fat body and certain other cells of some insects. Although the cellular location of ice has been determined only in vitro, several lines of evidence suggest that IIF occurs in vivo. Both cell-to-cell propagation of intracellular ice and inoculation from the haemocoel may be important, although the route of ice into the cell is unclear. It is unclear why some cells survive IIF and others do not, but it is suggested that the shape, size, and low water content of fat body cells may predispose them towards surviving ice formation. We speculate that IIF may reduce water loss in some freeze tolerant species, but there are too few data to build a strong conceptual model of the advantages of IIF. We suggest that new developments in microscopy and other forms of imaging may allow investigation of the cellular location of ice in freeze tolerant insects in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.