Abstract

We have employed 31P nuclear magnetic resonance (NMR) spectroscopy to examine the relationship between cytosolic free Mg2+ ([Mg2+]in), intracellular pH, high energy phosphates, and genetic hypertension using the Wistar-Kyoto rat (WKY) as a control and the spontaneously hypertensive rat (SHR) as a model for essential hypertension. The mean systolic blood pressures (measured using the tail cuff method) of control and hypertensive rats (aged 7 to 12 weeks) were 113 +/- 4 mm Hg (mean +/- 2 SE, n = 14) and 162 +/- 5 mm Hg (mean +/- 2 SE, n = 17), respectively. Intracellular free Mg2+ levels were significantly depleted in the isolated Langendorff perfused hypertensive rat hearts (452 +/- 39 mumol/L, mean +/- 2 SE, n = 17) compared to control hearts (756 +/- 52 mumol/L, n = 14); however, intracellular pH did not differ in the SHR hearts (7.02 +/- 0.03, mean +/- 2 SE, n = 7) compared with controls (7.03 +/- 0.03, n = 7). Although we could not demonstrate a statistically significant difference in the levels of P-creatine or ATP, intracellular Pi was two-fold higher (5.71 +/- 2.28 mmol/L v 2.92 +/- 0.66 mmol/L, n = 4) and the phosphorylation potential, [MgATP]/[MgADP][Pi], was correspondingly lower (3.0 X 10(4) +/- 1.6 x 10(4) v 8.3 X 10(4) +/- 1.4 X 10(4) (mol/L)-1, n = 4) in SHR compared to WKY hearts. These data demonstrate free magnesium depletion in heart muscle and indicate an alteration in cardiac bioenergetics in essential hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.