Abstract
Swiss 3T3 fibroblasts and LLC-PK epithelial cells in prometaphase or metaphase were either injected with fura-2 or loaded with the acetoxymethyl ester derivative of fura-2 (fura-2 AM) and monitored by microspectrofluorimetry. With both methods of loading, we observed two aspects of intracellular free calcium (Cai) metabolism. (a) Most fibroblasts and epithelial cells exhibited a gradual rise from 75 nM in metaphase to 185 nM during cleavage, returning to baseline by early G1. (b) Mitotic Swiss 3T3 cells exhibited rapid transient Cai changes, similar to those previously reported [Poenie, M., J. Alderton, R. Y. Tsien, R. A. Steinhardt. 1985. Nature (Lond.). 315:147-149; Poenie, M., J. Alderton, R. Steinhardt, and R. Tsien. 1986. Science (Wash. DC). 233:886-889; Ratan, R., and M. L. Shelanski. 1988. J. Cell Biol. 107:993]. These Cai transients occurred repetitively, often beginning in metaphase and continuing long after daughter cell formation. Eliminating serum or calcium from the medium abolished the transients, but delayed neither the gradual Cai elevation nor anaphase onset. Co-injection of EGTA or 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) with fura-2 in calcium-free medium, but not in calcium containing medium, blocked both anaphase and the sustained Cai elevation in almost all cases. Blocked cells were rescued by returning calcium to the medium, whereupon Cai slowly but steadily rose as the cell entered anaphase. Spindle microtubules persisted through the EGTA block. Depolymerization of spindle microtubules by nocodazole also reversibly blocked anaphase onset and the sustained Cai elevation, but did not block transients. This study has revealed the following: (a) anaphase in mammalian fibroblasts and epithelial cells is not triggered by brief calcium transients; (b) anaphase is a calcium-modulated event, usually accompanied by a sustained elevation of Cai above 50 nM; (c) the elevation of Cai is dependent upon an intact spindle; and (d) fibroblasts progress through mitosis by drawing upon either intracellular or extracellular sources of calcium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.