Abstract

Mycobacterium leprae replicates within mononuclear phagocytes, reaching enormous numbers in the macrophage-rich granulomas of lepromatous leprosy. To examine the capability of macrophages to digest M. leprae, we studied the intracellular fate of M. leprae organisms in normal and activated mouse macrophages by using the electron-dense secondary lysosome tracer Thoria Sol. Intracellular M. leprae organisms, surrounded by a characteristic electron-transparent zone, were contained within phagosomal vacuoles of macrophages cultured in vitro for 1 to 6 days. In normal macrophages, a majority of phagosomes containing freshly isolated live M. leprae cells resisted fusion with Thoria Sol-labeled lysosomes. The extent of fusion was not significantly affected by pretreatment of M. leprae with human patient serum high in specific immunoglobulin G and M antibodies. In contrast, a majority of phagosomes containing gamma-irradiated M. leprae cells underwent lysosome fusion in normal macrophages. In addition, increased phagolysosome fusion was observed with live M. leprae-containing phagosomes in macrophages activated with gamma interferon. Increased fusion was associated with an increase in the number of fragmented and damaged bacilli, suggesting that increased digestion followed fusion. This study indicates that activated macrophages may have an increased capacity for clearance of normally resistant M. leprae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.