Abstract

Tumor progressions such as metastasis are complicated events that involve abnormal expression of different miRNAs and enzymes. Monitoring these biomolecules in live cells with computational DNA nanotechnology may enable discrimination of tumor progression via digital outputs. Herein, we report intracellular entropy-driven multivalent DNA circuits to implement multi-bit computing for simultaneous analysis of intracellular telomerase and microRNAs including miR-21 and miR-31. These three biomolecules can trigger respective DNA strand displacement recycling reactions for signal amplification. They are visualized by fluorescence imaging, and their signal outputs are encoded as multi-bit binary codes for different cell types. The results can discriminate non-tumorigenic, malignant and metastatic breast cells as well as respective tumors. This DNA computing circuit is further performed in a microfluidic chip to differentiate rare co-cultured cells, which holds a potential for the analysis of clinical samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.